
Products and compositions with the Dirac delta function

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 381

(http://iopscience.iop.org/0305-4470/15/2/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 15:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 381-396. Printed in Great Britain 

Products and compositions with the Dirac delta function 

C K Raju 
Physical and Earth Sciences Division, Indian Statistical Institute, 203 B T Road, Calcutta 
700 035, India 
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Abstract. The need to define pointwise products and compositions with distributions is 
pointed out in the context of the problems of renormalisation, junction conditions and 
curved shock waves. Earlier definitions are briefly reviewed, and new definitions are 
proposed using non-standard analysis. Basic properties are established, and some products 
and compositions with the delta distribution are explicitly evaluated. With these definitions, 
the domain of validity of the nonlinear differential equations of classical field theory can be 
extended to include discontinuous fields, without introducing new phenomenology. As an 
example, the Rankine-Hugoniot equations are derived from the Euler equations. An 
immediate application to quantum field theory is pointed out. 

1. Introduction 

The notion of the Dirac delta function has been rigorously formulated in Schwartz’s 
(195 1) theory of distributions, the equivalent theory of generalised functions (Gel’fand 
and Shilov 1964), and Mikusinski’s (1959) theory of operators. In all these theories, 
pointwise products (i.e. products of two generalised functions of the same ‘argument’) 
and compositions (of a distribution, or an operator, with an ordinary function) are 
irregular operations in the sense of Mikusinski (1961). However, in many concrete 
situations in physics, such irregular operations arise, and are dealt with, without due 
regard to rigour. Although this problem has been known for nearly three decades, it 
remains incompletely solved. 

The problem of defining pointwise products of distributions is closely connected 
with the problem of renormalisation in quantum field theory. The propagators (Green 
functions) of quantum field theory are well known distributions, and products of these 
propagators enter into the perturbation expansion of the S matrix. Going over to the 
momentum representation, the (formal) Fourier transformations of these products lead 
to divergent integrals. Thus, the so-called divergences of the S matrix can be traced to 
difficulties in defining the product of two distributions (Guttinger 1955, Bogoliubov and 
Shirkov 1959). 

Earlier attempts to define, or use, pointwise products of distributions (Konig 1954, 
Guttinger 1955, Gonzalez-Dominguez and Scarfiello 1956, Mikusinski 1961, 1966, 
Fisher 1971, Thurber and Katz 1974) have, therefore, been inspired by possible 
applications to the problem of renormalisation. In particular, most of the effort seems 
to have gone into proving the formula 

S .  x-l= + j r  (1.1) 
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which is of some use in quantum field theory. Similarly, compositions have been 
defined in only a few simple cases (Lojasiewicz 1957, Fisher 1974, Tewari 1977), and 
many interesting expressions lie outside the scope of these definitions. 

Naturally, these operations, if suitably defined, have a much wider range of 
applicability. The two examples given below illustrate the general situation that might 
arise in classical field theory. 

1.1.  Junction conditions 

In general relativity, the exact degree of smoothness that can be assigned to the 
components of the metric tensor, g,,, is not known. In certain situations it may be 
physically permissible to choose the g,, E CO (for example, Lanczos 1924, Papapetrou 
and Hamoui 1968, 1979, Evans 1977). Mathematically, however, this leads to 
difficulties in view of the usual formulae 

In particular, if the g,, were chosen to be discontinuous, as suggested by Raju (1979), 
the components of the Ricci tensor would involve functions of the form S 2 .  Thus, either 
one has to solve the problem mentioned in the first paragraph, or abandon formulae 
(1.2) and develop altogether new techniques, that may or may not be reliable. 

1.2. Curved shocks 

Shock waves arising in practice are usually curved, and the equations of continuity and 
momentum 

a p / a t  + div( p u )  = 0 

p ( a v / a t ) + p ( v  a V)v = -VP-pVF+divYv 
(1.3) 

(where Yv is the viscous stress tensor) immediately lead to the above problem if the 
density p, pressure P and velocity v are chosen to be discontinuous at an arbitrary 
hypersurface. 

To solve the above problems, it is necessary to assign some meaning to entities such 
as S ( x )  * S ( x ) ,  S(f(x)), etc. Mathematically there may be many ways to do this, but the 
physical aspect of the problem imposes certain constraints. An arbitrary definition 
would not be of much value to the physicist, because our continued belief in the 
equations (1.2) and (1.3), for example, if at all justified, would require fresh 
phenomenology. A similar difficulty would seem to arise with regard to the formalism 
of quantum field theory. In the sequel, certain elementary techniques from non- 
standard analysis are used to obtain a solution to the problem of defining irregular 
operations in a physically reasonable manner. 

Non-standard analysis rigorously incorporates infinitesimals and infinities, and one 
may add and multiply these exactly like ordinary numbers. There is no danger of 
reaching absurd conclusions, provided the final result is always a standard one, i.e. does 
not involve infinities or infinitesimals. This is because it has been proved (Robinson 
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1966, Stroyan and Luxemburg 1976) that any standard result derived using non- 
standard techniques is necessarily a valid result, and, in principle, could have been 
derived without using these techniques. (In practice, of course, it may be very difficult 
to obtain a standard proof, and even so the standard proof is usually much lengthier.) 
Non-standard analysis, therefore, provides an ideal tool because, in both classical and 
quantum field theory, irregular operations with distributions are required only at an 
intermediate stage, and the final result must be free from infinities if it is to be physically 
meaningful. 

2. Products 

2.1. Earlier definitions 

We let D, D' denote the space of test functions and distributions respectively. It is well 
known that the product of T E D '  and f E D can be defined by 

( T f , g ) = ( T , f g )  (2.1) 
for any g E D, (T, h)  denoting the value of the functional T at h. This product is well 
defined, and the Leibniz formula holds (see, for example, Rudin 1974). Konig (1954) 
has constructed product spaces of distributions, and mapped these spaces back into D' 
in a manner that preserves the formula (2.1) in the form 

(TS, g )  = (T, S g ) .  (2.2) 

It is asserted that (2.2) makes sense on the null space of S,  with TS = 0 there. Thus, we 
have 

S(x -a)S(x -6) = clS(x - b )  S a ' =  c2S' +c3S (2.3) 

where cl, c2, c3 are arbitrary constants. The product, in general, is neither commutative 
nor associative. In fact, there is only one possibility concerning the association of 
factors in a product of T I ,  T2,. . . , Tn, either T1(T2(. . . T , ) ) .  . . )  or 
( . . . (( Tl T2)  . . . )T,,. The usual example for the failure of the associative law is 

(2.4) x- ' (xS)  = 0 # S = (x - 'x )S .  

The main problem with the product, so defined, lies in arbitrariness in the choice of 
the constants c1,  c2, c3. In practice, the choice of the constants is tailored to meet the 
needs of a particular application. Needless to say, the tailoring does not always fit the 
physical requirements of the problem, rendering our continued belief in equations of 
the type (1.2) and (1.3) invalid. 

Mikusinski (1961), on the other hand, has proposed a general theory of irregular 
operations for distributions. If R is an operation defined for test functions, R can be 
extended to distributions by defining 

R ( f ,  g , .  ) =  lim R ( c p n ,  qn,.  1 (2.5) 

(where {cp,},  {q,}, . . . are fundamental sequences converging to f ,  g,  . . . ), provided the 
sequence {R(cp,, q,, . . . )} is fundamental. The sequence rp, can be obtained as f OS,, 
where 6, is a sequence converging to 8, and 0 denotes convolution. It is asserted that 
the extension of the operation R, so defined, exists and is unique. Mikusinski (1966) 

n+m 
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uses this definition to obtain the formula 
82-T-2(x-1)2= -T-2x-2 

and also the equality (1.1). The left-handside of (2.6) is considered as the distributional 
limit of 8;  - T-~(X-*OS,)~,  no meaning being assigned to the individual terms. 

One problem with Mikusinski’s (1961) definition is that the associative law holds. 
Consequently, expressions such as x-’ x - S remain undefined, in view of (2.4). 

This defect in Mikusinski’s definition has been removed by Fisher (1971) by 
restricting Mikusinski’s definition to binary operations. Thus, the product of three 
distributions (f g) h, even if it exists, is not necessarily equal to the limit of the 
sequence f, * g, - h,, but, is given as the limit of the sequence p, h,, where p is the 
distribution f g. Fisher (197 1) also obtains the formula (1.1) and other applications 
are to be found in Fisher (1972, 1973). The product, naturally, fails to be associative 
although it is commutative. The last two theories do not ascribe any general meaning to 
the symbol S 2 ,  and, hence, are not applicable to the sort of problems proposed in the 
introduction. 

Thurber and Katz (1974) do not really define products using the non-standard 
extension, *D’, of D‘. Instead they seem to consider 

A”(x - a )  = (n/.rr)p’2 exp[-np(x -a) ’ ]  (2.7) 

where n is a positive infinite constant, as a fractional power of the delta function. 
Naturally, there are various types of delta functions in this theory, i.e. the theory of 
Thurber and Katz deals with non-standard extensions of sequences converging to the 
delta distribution, and not with the delta distribution, per se. 

2.2. Definition off g 

Consider the non-standard spaces * D  and *D’ (Stroyan and Luxemburg 1976). Define, 
for f ,  g E D’ 

fn = f  @ a n  

S,(x) = na(nx) (2.8) 

f g =  lim * (fn * g )  (2.9) 
n = w  

U being a symmetric, infinitely differentiable function with a ( x )  dx = 1, with 
~ ( 0 )  # 0, and with support contained in the interval [-1, 11. The * in (2.9) denotes the 
non-standard extension of the sequence of distributions fn * g, and the notation lim,=, 
refers to an evaluation of the oth term of this sequence for a fixed positive infinite 
integer W .  The non-standard representation of a given distribution is nearly unique, in 
that any two representations would differ by an infinitesimal distribution. If two 
(non-standard) distributions, hl, hZ,  differ by an infinitesimal distribution, we write 

The product of two distributions, defined by (2.9), always exisrs in *D‘. In case f is a 
function, the product defined by (2.9) differs from the one defined by (2.1) by an 
infinitesimal distribution. (2.9) extends (2. l ) ,  and, in particular, we have 

(2.10) 

6’ turns out to be an infinite distribution, i.e. (a’, g) is infinite for g E fin *D’ (Stroyan 
and Luxemburg 1976). 

hi B h2. 

2 s rs,(O)S. 
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Naturally, the choice of the infinite subscript w and the sequence S, is non-unique, 
but different choices will lead to different distributions only i f f  * g is infinite. The last 
property is important because it ensures that the final result, which should be a standard 
one, would not be affected by the choice of S, and of w. For problems relating to 
hypersurfaces of discontinuity, this comes about in the following manner: for standard 
real numbers a, b, c, 

a s2+  b6 + c  0 

iff 

(2.11) 

a = b = c  = O .  (2.12) 

Proof. c = 0 trivially, and (2.11) implies that a Z -b/S,(O) is an infinitesimal. Since a 
has been assumed to be a standard real number, a = 0, leading to b = 0. 

When discontinuities are present in the field variables, equations of the type (1.2) 
and (1.3) would ultimately reduce to an equation of the form (2.11). Hence, the final 
result would be independent of the choice of 6, and of w. 

We observe that this last property would not hold if we had defined f g = f w  g,. 
Thus Sw(x  - a )  * S,(x - b) ,  a # b, would involve the product of an infinity and an 
infinitesimal, and would be infinite, finite or infinitesimal depending on the choice of the 
approximating sequence 6, and the infinite integer w. In contrast, with the definition 
(2.9), iff g is infinite (finite, infinitesimal) for one choice of 6, and U, then it is infinite 
(finite, infinitesimal) for all choices of S, and w. 

In the present theory, also, it is possible to define fractional powers of the delta 
function by 

S P  = S:-l(O)S (2.13) 

leading, in particular, to the infinitesimal distribution 

S1’2 = s;l’z (0)s. 

2.3. Properties 

The commutative law fails, since 

86’ d lim 8, 8’ d 
n = w  

whereas 

8’6 c s:(O)s. 

-s:(O)s + 

The associative law also fails, in general, since 

( f S ) S ’ &  f ( O ) ( S S ’ )  c -f(o)s:(o)s + f(0)6,(O)S’ 

f (S6’)  t -[f(o)s:(o)+f’(O)]S + f (O)S, (O)S’ .  

whereas 

(2.14) 

(2.15) 

(2.16) 

The failure of the commutative and associative laws is unimportant within the 
present-day symmetric formalism of quantum field theory (Guttinger 1955). There- 
fore, for the purposes of quantum field theory, the product may even be symmetrised by 
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defining 

f o g  =i(f - g + g  f). (2.17) 

In view of (2.4), it is not possible to obtain an associative product, since f * g always 
exists. Both the distributive laws are trivially valid. 

As is obvious from (1.2) and (1.3), a situation frequently encountered in applications 
is the multiplication of a delta function by a discontinuous function. To cover this 
situation, we have the following theorem. 

Theorem 1. Iff  is a function with a simple discontinuity at 0 then 

f ' 6 f i[f(O') +f(o-)]S 

where f S is defined by (2.9). 

Proof. It is sufficient to prove that 

Now, from (2.8) 

(2.18) 

(2.19) 

(2.20) 

which gives, by a simple change of variables (ny = x) 
1 

(fOS")(O) = I [f(-xln) +f(xln)I&) dx (2.21) 

since U is symmetric, with support contained in [-1, 13. Since f is continuous in a 
neighbourhood of zero 

0 

(2.22) 

Since El(w)  and Ea(@) are infinitesimals, the theorem holds. 

Corollary 1. If H is the Heaviside function, H ( x )  = 1 for x < 0 and H ( x )  = 0 otherwise, 

H * s ais. (2.24) 

(2.24) is also valid with Fisher's (1971) definition. 

Theorem 2 (Leibniz rule). For f, g ED', 

(f . g)'k' f (;)f"X-". 
i = O  

(2.25) 
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It follows that 

(2.34) 

To evaluate the constants cZi E *R, we select functions hi (x ) ,  that behave like xi/i! in 
a neighbourhood of zero, so that 

where 

- n  x, (0) t lim (x-" OSj)(0) d lim (x-", Si). 
/=o I = W  

Consequently, 

( n  + k - i - l ) !  - n - k + r  
n - 1  

g ' k ' .  X-" - c ( - 1 ) ;  
i=O i ! ( n  - i  - l ) !  

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

where = 0 if n + k - i is odd. 
The products X-" are different, and can be evaluated using the identity 

for an infinitely differentiable function f .  Thus, 

(2.43) 

(2.44) 

where, as before, x ; , - ~ + ~ ( O )  = 0 if n + k - i is odd. 
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For the case k = 0, n = 1, we obtain 

S . x - 1 b - S ’  x -1 * S b O  (2.45) 

(2.46) 

Products with other extensions of x - ~  may also be obtained from the above formulae. 
Thus, 

s ( x  fie)-’ t - 8 ’ 7  wiS 2 (2.47) 

(2.48) 

3. Compositions 

If g is a C’ function, g ( x l )  = 0, g’(xl)  # 0,  S (g (x ) )  is usually defined (Gel’fand and Shilov 
1964) by carrying out a formal change of variables 

@(g(x ) ) ,  h ) =  h(Xi)/k’(xi)I  V h E D  

i.e. 
S(g (x ) )  = Jg’(xl)l-’S(x - X I ) .  (3.1) 

f ( g ( x ) ) =  lim * ( f n ( g ( x ) ) )  fn  =f@& (3.2) 

Here we shall define, for any f~ D‘, g E C“, g’ f 0 

n = w  

The distribution defined by (3.2) always exists and is given, using the change of variables 
formula for ordinary functions, by 

Moreover, the distribution defined by (3.2) is nearly unique in that a different sequence 
S, or a different infinite constant w would lead to a distribution f,,(g(x)) which would 
differ from f,(g(x)) by an infinitesimal distribution, provided f ( g ( x ) )  is finite. 

Proof. The non-standard proof follows immediately from the usual chain rule. One can 
also see this directly, since for any h E D ,  

([ f (g(x) ) l ’  h )  S - ( f ( g ( x ) ) ,  h’) 
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since (g-lIf = I/g'(g-'). 
In case g has several real roots xl, x2, . . . , xnr g'(xi) # 0, the definition (3.2) reduces 

to the usual definition for a distribution of finite order, provided g'(g-'(x))#O, for 
x E supp f, since 

(3.7) 

The chain rule continues to be valid. 

3.1. Multiple roots 

In case g E Cw has multiple roots at xl, then (3.3) can no longer be used, since g'(xl) = 0. 
In this situation, Fisher (1974) and Tewari (1977) have adopted a limiting procedure to 
define 6(r)(x2mi1), yielding 

where Cl" are arbitrary constants, the functional having been extended in the usual 
manner. The distributions corresponding to S ( r ) ( ~ 2 m )  are not defined by Fisher (1974), 
because xZm is not invertible in a neighbourhood of zero. 

If the definition (3.2) is used, S'"(g(x)) is defined for g E C", regardless of the nature 
of the roots of g(x). Thus, 

and if 

(3.9) 

(3.10) 

then I: is * finite, since I' is finite, the integrand being continuous with compact 
support. If g is invertible in a neighbourhood of zero, 1: is finite provided 
lim,,o q(g-'(x))/g'(g-'(x)) exists. In particular, if g(x) = x2"'+', the definition (3.2) 
agrees with (3.8) on the subspace D(0, 1, . . . , 2mr+2m + r -  1). However, the 
constants Cl", in this theory, are not arbitrary. To evaluate these constants, we select, 
as in (2.35), functions hi E D  which behave like x i / i !  in a neighbourhood of zero. Thus, 

m 

(~(r)(~Zm+l ), hi(x)) L (-l)iC;m d S ~ ' ( x 2 " ' ) h j ( x )  dx. (3.11) 
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For large n 
m 

I,, = [ Sf'(x2m+1)hi(x) dx 
J-m 

= c+ lom* 
Putting y = - x  in the first integral in (3.13), we obtain 

So I,, = 0 if i + r is odd, and otherwise 

Substituting z = xZm+' 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

n .m 

where z? = z'H(z), H being the Heaviside function. Hence, 

i !  cim c 2(2m + n ( 2 m j + 2 m  + j - i ) ( Z ~ ; ' m r - * m - r ) l ( * m + l )  )(Oh (3.18) 

One may also evaluate the Cy explicitly, in terms of U and U, by observing that the 
limits of integration in (3.12) are from -n-1/(2mc1) to n - 1 / ( 2 m + l )  and substituting 
y = n  

r 

j = l  

x to obtain 1 / ( 2 m + l )  

1 

i !  c ; m  ( _ l ) i 2 W ( 2 m r + 2 m + r - i ) / 1 2 m + l )  dy 

1 d i d 2mr + 2 m  + r - 1, i + r even. (3.19) 

3.2. Even functions 

Compositions with even functions occur in many situations in physics. Apart from 
situations arising out of the examples mentioned in the introduction, we may mention 
the Schwarzschild-Tetrode-Fokker action (Hoyle and Narlikar 1964) 

J = -1 mi J (iG)i(i)r)1/2 dTi - 5  eiej i{i)S[(zc) - Z ~ ) ) ( Z ( ~ ) ~  -~ (~)&) ] i ! ! )  dTi dTj 
I i Z j  

(3.20) 

where ei is the charge, mi the mass and zi = z i ( q )  the world line of the ith particle. 
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As pointed out earlier, compositions with even functions have not been defined 
previously because a change of variables cannot immediately be carried out. However, 
expressions such as S':'(x2") still make sense, and these still induce distributions in *D' 
because S!,"(x2") induces a distribution for each n. For example, 

t lim J na(nx2")g(x) dx 
n = w  --oo 

t lim J n(+(nx2")g (x )  dx 
n = w  - n - 1 / 2 m  

since Supp cr c [-1,1]. Now 

(3.21) 

In the first integral we carry out the change of variables y = -x, yielding 
- 1 / 2 m  

I,, = Io ncr(nx2")[g(x)  + g(-x)] dx. (3.23) 

Substituting x = (z/n)'j2", 0 s x s 

a ( z ) { g [ ( z / n ) ' / " ]  + g[-(z/n)"}(z/n)"-2m)/2m dz. (3.24) 

The integral in (3.20) is finite provided 

lim [ g ( y ' / 2 " ) + g ( - y ' / 2 " ) ] .  Y(1-2")/2m 

y-o+ 

exists. The limit in question exists and is zero provided g E D(0, 1,2 ,  . . . , 2 m  - 2). 
Since g has compact support, In = 0, i.e. S w ( x 2 " )  is infinitesimal for g E 
fin "D(0, 1 , 2 , .  . . , 2 m  -2). It follows that 

2m-2 

S w ( x 2 m ) t  1 apmS(i). (3.25) 
i=O 

More generally, the above procedure yields 
2mr+2m-2 

S ( r ) ( X 2 m )  t 1 a ; m s ( i )  (3.26) 
i = O  

where the constants ai" may be evaluated as before 

a;" t o  if i + r even (3.27) 

)(a) (3.28) 
r 

j = O  

(i--Zmr-Zm+l)/Zm i !afm ~-2 (2m)- ' - '  IT (2mj+2m-1-i)(zt,  

1 jo LT(~)(z'"')z~ dz (- 1) i2w ( 2 m r t 2 m  - i - l ) / 2 m  

(3.29) 
1 s i s 2mr + 2m - 2, i + r odd. 

In view of (3.29), all the distributions S ( r ) ( ~ Z m )  are infinite. 
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Compositions with oscillating functions also occur, for instance, in the study of 
oscillating surface layers in relativity. For this purpose, we record 

S ( l  -sin x) & k 1 S(x -$(4n + 1 ) ~ )  
n 

1 " T r  

k & 5 io a(1 -sin y)d1 +sin y dy. 

(3.30) 

(3.31) 

Before concluding this section, we observe that the hypothesis g E C" is not 
essential for definingf(g(x)). Forf ED', f(g(x)) exists in *D' providedf,(g(x)) E D' for 
each n, i.e. provided fn(g(x)) is locally integrable. 

4. Applications 

4.1. Derivation of the Rankine-Hugoniot equations 

It is usually asserted that the Euler equations (1.3) are not valid at discontinuities, where 
one must use, for instance, the Rankine-Hugoniot equations. The Rankine-Hugoniot 
equations are usually stated in the form 

(4.1) 

where U is the shock velocity, and the subscript 0 refers to the undisturbed fluid ahead 
of the shock. We propose to derive these equations from the usual equations of 
continuity and momentum (1.3) thereby demonstrating that the equations (1.3) are 
indeed valid at discontinuities. To this end, we observe that the equations (4.1) are valid 
for normal shocks of infinite extent, and a two-point flow field in two dimensions, with a 
simple discontinuity at the surface of the shock. 

To derive these equations, using the present methods, we suppose that the hyper- 
surface of discontinuity is given by 

Po(U - M O )  = P(U - U )  po(U- uo)(u -MO) = P- Po 

y = j q t )  = Ut U = ag/at = constant. (4.2) 
Further, let 

P = p-x- + p+x+ ui=u;X-+utX+ i = 1 , 2  
(4.3) 

P = P-x- + P+X+ 

~ + = x ( ~ ( r ) , m ) ( x ) = H ( x  -Y(t))  x-=l-x+ (4.4) 

where 

H being the Heaviside function. 
We observe that 

ax'= S(X - Y ( t ) )  ax- = -S(x - jqt ) )  
ax ax 

ax-= +US(X - y ( t ) ) .  
at 

The equation of continuity, in two dimensions, is 

(4.5) 
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Substituting (4.3) in (4.6), we have 

-ax- +ax+ - -ax- + + ax+ 
P - + p  - + p  u1-+p u1-=o0. at at ax ax 

Substituting (4.5) in (4.7) leads to 

- ( p - - p C ) U 8 ( x  -f( t))= (p'u: - p - u ; ) s ( x  -F(t)) ,  

p + ( U  - U:) = p - ( U  - U;) 

Hence, by proposition 3, 

which is the same as the first of (4.1) with p o  = pfr p = p - ,  uo = u t ,  U = U ;  
The momentum equation is 

au1 au, ap ap p-+pul-= ---- 
at ax dx ay '  

Substituting (4.3) and (4.5) in (4.10), we have 

-(vu; - Uu;)ps(x  - ~ ( t ) ) + ( p + u : X + f p - u ; x - ) ( u t  - U ; ) s ( x  - j q t ) )  

=(P--P')s(x- jqt)) .  

Hence, by theorems 1 and 3, 

i(*: - u ; ) [ p + u :  + p - U ;  - p + u - p - u 1 =  P--P'. 

p ' ( U -  uT)(u;  - U T )  = P--P'. 

Using (4.9), (4.12) leads to the second Rankine-Hugoniot equation 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.1 1) 

(4.12) 

(4.13) 

Sometimes a third Rankine-Hugoniot equation is used, and this can be derived 
similarly from the energy equation. 

From the physical point of view, the equations (1.3) only express the conservation of 
mass and momentum, in differential form, and it is possible to derive the Rankine- 
Hugoniot equations by appealing directly to these conservation principles. Alter- 
natively, one may adopt the procedure of expressing the physical laws underlying (1.3) 
in integral form in a narrow region enclosing the shock, and use the divergence theorem 
to pass to the limit. This corresponds to our earlier assertion that any standard result 
derived using non-standard techniques could, in principle, have been derived without 
using these techniques. However, the merits of the non-standard procedure become 
obvious when we try to integrate the equations (1.3) for the case of an arbitrary 
hypersurface, or in relativity, for the case where the g,, are discontinuous. 

4.1.1. The effect of viscosity. If turbulence is present behind, and in front of, the shock, 
the effect of (eddy) viscosity may be taken into account by including a term of the form 
p V 2 u  in place of the viscous stress tensor in (1.3). Now, (4.5) yields 

aul/ax =(U: - u ; ) s ( ~ - y ( t ) )  a2u1/ax2 = (U; - u; )s ' (x  - Y ( t ) ) .  

Hence, by theorem 3, we would have an additional equation of the form 

(4.14) 

p ( u t  -U;) = 0 (4.15) 

which must be regarded as a consistency condition. Using equation (4.13) this can be 
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put in the form 

p ( P -  - P') 
p+(u: - U) = O- 

N =  (4.16) 

If we only have N = 0, the Rankine-Hugoniot equations are only approximately 
applicable. 

The physical interpretation of this consistency condition is that the Rankine- 
Hugoniot equations are not valid for strong shocks-strong shocks would curve due to 
the effect of viscosity. It is proposed to develop a general theory of curved shocks, using 
the above methods. 

Applications to the problem of junction conditions have been considered separately 
(Raju 1982). 

4.2. Calculation of transition probabilities 

In quantum field theory, to calculate the probabilities of various scattering processes, it 
is necessary to evaluate squares of the S-matrix elements. The S-matrix elements may 
be written in the general form (Bogoliubov and Shirkov 1959, equation (21.35)) 

@ . . . p r . . .  s@ . . .p . . .  = p -1 p')F(P', P) (4.17) 

where @.. .p . . .  denotes the initial, s-particle state @plclp2cz. . .pscs  and @ . . . p r . . ,  denotes the 
final state @ p i c , p ~ c z . , , p b r  the ith particle having momentum pi  and inner quantum 
number ai. The appearance of the (4-dimensional) S function signifies the conservation 
of energy and momentum. If the states are normalised to one particle per unit volume, 
it follows that (Bogoliubov and Shirkov 1959, equation (22.14)) the numbers of 
particles scattered into the momentum intervals Ap,, Apz, . . , , Ap, are given by 

(2tr)3SI @.,,p, . . .S@.. .~ , . .12A~~Ap~ . Apr. (4.18) 

For the purpose of this discussion, we may and do assume that F ( p ' , p )  is 
continuous. Nevertheless, the expression (4.18) turns out to be infinite because of the 
appearance of the square of the S function. To obtain a correspondence with experi- 
ments, it is clearly necessary that the differential cross section calculated using (4.18) 
should be finite. Consequently, it is customary (for instance, Schweber 1964, Bjorken 
and Drelll965) to follow the procedure proposed by Lippmann and Schwinger (1950) 
and divide by the apparently meaningless quantity (~T)~S(O) .  

We propose, heuristically, the following justification for the procedure of dividing 
out by the infinite, but meaningful, quantity (27r)4S,(0). The squares of the S-matrix 
elements cannot be regarded as probabilities, because a probability must lie between 0 
and 1 and should sum up to 1 .  The squares of the S-matrix elements, however, can be 
regarded as proportional to the probability of transition from the initial to the final state. 
To obtain the relevant probability, it is only necessary to divide by the constant of 
proportionality-in this case, the infinite number ( 2 ~ ) ~ s "  (0). To interpret the prob- 
ability so obtained, one may go over to the usual procedure of switching on the 
interaction adiabatically with an intensity g, in a region of volume V and for time T. In 
the limiting case as g + 1, division by (~T)~SW(O) corresponds to division by W, so that 
the transition probability represents the fraction of incident particles scattered per unit 
volume per unit time. 
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Thus, while the justification for division by ( 2 . ~ r ) ~ S ,  (0) comes from the requirement 
that a probability should sum up to give 1 , the interpretation of the resulting probability 
may be represented symbolically, as it usually is, by ( ~ T ) ~ S ( O )  = VT. 

The problem of renormalisation arises because of singularities of the function 
F ( p ’ , p ) ,  corresponding to the infinities in the products of the Green functions, and 
perhaps a similar procedure of division would yield the desired results in this case as 
well. 
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